
A Petri Net-based Approach to OWL Ontology
Representation

Lorena Chavarŕıa-Báez1 and Oscar Dı́az2

1 Instituto Politécnico Nacional, Escuela Superior de Cómputo,
México, D.F., México

2 Universidad del Páıs Vasco, Facultad de Informática,
San Sebastián, España

lchavarria@ipn.mx, oscar.diaz@ehu.es

Abstract. Ontologies are an essential component to construct the Se-
mantic Web. Therefore, their accuracy and quality must be assured.
From the point of view of several fields of study, models (or repre-
sentations) are useful to achieve that goal. Petri Nets are a graphical
and mathematical modeling tool whose capabilities to express important
systems characteristics makes them valuable for ontology representation,
verification and reasoning. However, given that their application has been
reduced to depict taxonomies, the verification and reasoning process are
partially achieved. So, there is a need to have a comprehensive ontology
representation. In this paper, we introduce the Ontology Conditional
Coloured Petri Net (OCCPN) model, a Petri Net extension to represent
ontologies. Unlike existing proposals, OCCPN not only gives details
of the taxonomy but, by evaluating conditions, also provides modeling
primitives to create complex classes and describe properties as well as
additional restrictions.

Keywords: Ontology, modeling, Petri net

1 Introduction

Ontologies as an essential component of the Semantic Web [1]. This puts strin-
gent demands on their accuracy and quality [11].

Different areas, e.g. knowledge representation, ontology engineering, and model–
based engineering, highlight the fact that “models are useful to ensure quality
and discover errors in conceptual design” [4]. In this sense, the first activity
to develop high–quality ontologies should be to create an expressive enough
and well–founded model that serves as their surrogate, and, then use it in the
evaluation process.

By following this methodology, some works apply model–theoretic notions
to the design and analysis of ontologies, so that, ontology representation and
examination are performed by using the principles of a given mathematical

27 Research in Computing Science 100 (2015)pp. 27–38; rec. 2015-04-05; acc. 2015-07-15

theory [6, 5]. Although promising, this procedure requires high understanding of
formal tools. Other approaches use Petri Nets (PNs) to ontology representation
and verification [8, 13]. Liu et al. [8] introduce the State Controlled Coloured
Petri Net (SCCPN), which includes both structures to depict ontology concepts
and their associated relationships and dynamic knowledge inference by means
coloured tokens. The same authors, but in a posterior work [13], claim that stan-
dard ontologies are not sufficient to handle imprecise or fuzzy information and, as
a result, extend SCCPN to model and verify fuzzy ontologies. Nevertheless, this
work does not provide class constructors nor property characterization, which
limits the scope of the verification and, in consequence, falls short to account
for the rich scenario described in [11]. This begs what is the research question of
this paper: to what extend can Petri Nets capture the expressiveness required for
modeling ontologies. Up to date, PNs has been used for ontology modeling, only
at a taxonomic level, given their capacity to describe concurrent, asynchronous,
distributed, parallel, non–deterministic and/or stochastic systems [9]. Therefore,
in this paper, we address the question based on previous experience on PNs,
specifically, we tap into the Conditional Coloured Petri Net (CCPN) [7, 3], a PN
extension designed for active rules [10]. We expand CCPN to represent ontologies
and develop the Ontology CCPN (OCCPN). By evaluating conditions, OCCPN
not only depicts a taxonomy but also provides the means to create complex
classes, describe properties and additional restrictions. This makes our model
more comprehensive. As a PN extension, the OCCPN has both a graphical and
mathematical model [9]. In this paper, only the former is presented.

The rest of the paper is organized as follows. Section 2 explains the set
of OWL language constructs. Then, CCPN foundation is presented. Section 3
illustrates an example of the ontology representation using OCCPN. Section 4
and 5 gives details about classes and properties, respectively. Section 6 shows a
complete OCCPN model. Finally, Section 7 formulates conclusions and future
work.

2 Background

This section outlines two important notions: the Web Ontology Language, a
means for authoring ontologies, and Petri Nets, particularly, the Conditional
Coloured Petri Net, a useful modeling tool.

2.1 The Web Ontology Language

The Web Ontology Language (OWL) is a language designed to represent ontolo-
gies through the definition of their parts, namely: classes (concepts), individuals
(instances), and properties (relations) [14, 12, 2]. A class assembles objects with
similar characteristics. An individual, or class instance, is a particular element
that satisfies the class description, the set of all class individuals constitute
the class extension. Properties define relations, either between individuals or
between individuals and data values. Next subsections give more details about
these parts.

28

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

Classes OWL has two predefined classes: owl:Thing, whose extension com-
prises all individuals, and owl:Nothing, which does not have any element. Every
new class is a subclass of owl:Thing, and owl:Nothing is a subclass of any class
[2]. There are several forms to declare new classes: the easiest one is creating
a named class, i.e., a named instance of owl:Class; other ways, known as
class constructors, are those that establish constraints on the elements of their
extension. However, this last method produces anonymous classes.

Class constructors cover enumeration, set operators, and property restric-
tions.

Enumeration, owl:oneOf clause, fabricates a class by the exhaustive listing of
its instances. Set operators, involving owl:intersectionOf, owl:unionOf, and
owl:complementOf instructions, describe classes by acting like their traditional
set operator counterparts. Property restrictions include value and cardinality
constraints. The former, regulate the type of the class extension, and, the latter,
the number. In this way, owl:someValuesFrom, verifies an existential quantifica-
tion, owl:allValuesFrom, validates a universal one, and owl:hasValue, exam-
ines a particular value. owl:minCardinality and owl:maxCardinality check
the minimum and maximum quantity of instances in the property, respectively.

When a class is a subclass, by means of the owl:subClassOf clause, of
another one, the extension of the former is a subset of the extension of the latter.
If two classes, using the owl:equivalentClass assertion, are equivalent, their
extensions are the same. On the contrary, if they are disjoint classes, using the
owl:disjointWith declaration, the intersection of their extension is the empty
set [14, 12].

Individuals Individuals are, either named or anonymous, class members [2].
Therefore, they contain data for each part of the class template: attributes
and properties. Additionally, individuals specify facts regarding their identity by
means of the sentences owl:sameAs, owl:differentFrom, and owl:AllDifferent,
which establishes that two individuals are the same, two individuals are different,
and all the individuals in a list are all different, respectively.

Properties Properties have name, domain, and range. The property links ele-
ments from the domain to those from the range. If components from both domain
and range are individuals, then the type of the property is owl:ObjectProperty.
But, if they are individuals and data types, then the kind is owl:DatatypeProper-
ty [2]. A property can have additional features, which imposes new constraints on
it. For example, logical characteristics, namely: owl:TransitiveProperty, and
owl:SymmetricProperty, as their names suggest, verify if a property fulfills the
conditions to be transitive and symmetric, respectively. Functional features in-
clude the statements owl:FunctionalProperty and owl:InverseFunctional-

Property. The former describes a condition in which there is, at most, one
unique value from the range for each domain instance. The latter checks the
functional constraint and its contrary, i.e., there is, at most, one unique value
from the domain for each range instance.

29

A Petri Net-based Approach to OWL Ontology Representation

Research in Computing Science 100 (2015)

Finally, properties are closely interrelated by means the rdfs:subPropertyOf
statement, which indicates that if P1 is a sub-property of P2, then the pairs
satisfying the former are a subset of those accomplishing the latter, and the
owl:inverseOf clause, that defines P2 as the opposite of P1 [14, 12].

2.2 Petri Nets

A Petri Net (PN) is both a graphical and mathematical modeling tool. It is
a directed, weighted, bipartite graph consisting of two types of nodes, namely:
places and transitions, which graphically are represented as circles and bars (or
boxes), respectively [9]. Arcs are from a place to a transition or vice versa. In the
former case, places are known as input places, and, in the latter, as output places.
A marking, or state, assigns a non–negative number of tokens, represented as
black dots, to each place of the PN. A transition is enabled if in each one of its
input places there is, at least, w(p, t) tokens, where w(p, t) is the weight of the
arc from p to t. If the transition fires, the tokens are removed from each one of
its input places and are added to each one of its output places [9].

Conditional Coloured Petri Nets (CCPNs) are a PN extension originally
developed to model both structure and dynamics of active rules [10]. One of
its main advantages is the ability to evaluate complex conditions in transitions.
Fig. 1 shows its graphical part, for further details refer to [7].

A primitive place represents an indivisible event. A copy place, as its name
alludes, reproduces its original one. A virtual place acts as an information ware-
house. A composite place delineates complex events, for example, conjunction.

CCPN has the following types of transitions: rule, composite, and copy, which
evaluates the condition of an active rule, creates complex events, and duplicates
events, respectively. There are two types of arcs: normal and inhibitor. The token
element defines CCPN dynamics since a transition fires if it is enabled and, for
rule and composite typed ones, its condition, using the data contained in the
token, is evaluated to true. The inhibitor arc exhibits the contrary behavior, i.e.,
its transition is enabled if there is no token in its input place.

Primitive place

Copy place

Virtual place

Composite place

Rule transition

Composite transition

Copy transition

Normal arc

Inhibitor arc

Token

Fig. 1. CCPN basic elements.

3 Ontology Modeling through OCCPN

This section introduces Ontology CCPN (OCCPN), a CCPN augmentation to
represent OWL ontologies. The aim is to benefit from the ability of CCPNs to
evaluate conditions in transitions and provides modeling primitives to depict the

30

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

features described in Section 2.1. In consequence, OCCPN is a richer ontology
representation. This part specifically looks into how classes, individuals and
properties can be modeled through OCCPN. The intention is to give an intuitive
presentation. Section 4 and 5 will later provide a more formal account.

3.1 Classes and Individuals

In OCCPN, a primitive place represents a named class (see Fig. 2(a)). Place color
includes the elements: 1) name, 2) axioms, indicating relationships among classes,
3) attributes, attached to class with datatype properties, and 4) operations,
depicting object properties. When defining a new named class, both name and
axioms take a constant value, the rest of the attributes acquire data with each
new class instance. Class instantiation is represented by depositing tokens into
a primitive place. Such as Fig. 2(b) shows, each token has a name, a type, data
for place color, and identity facts.

3.2 Properties

A property is represented by the set of ordered pairs, (x, y), x ∈ domain, y ∈
range, for which the property is evaluated to true. Since rule transitions appraise
conditions, they are useful to stand for properties.

Fig. 2(c) shows the OCCPN structure to model object properties: given a rule
typed transition, T0, its input places, C0 and C1, symbolize domain and range,
respectively, and its output spot, C2, depicts the set of ordered pairs that satisfy
the condition attached to transition. C2’s color has the following elements: 1)
name, corresponding to property’s name, 2) logical characteristics, 3) property
interaction, and 4) functional features.

Since datatype properties link individuals to data values, they do not need a
rule typed transition, they are captured by class attributes. For a given datatype
property, its domain matches with the class name, its name corresponds to the
attribute name, and its range constraints the attribute’s datatype.

C0 Color:
 + name
 + axioms
 + attributes
 + operations

Token:
 + name
 + type
 + data
 + individual identity

(Domain)
C0

(Range)
C1

(Property name)
T 0

C color:
 + name
 + domain
 + range
 + logical characteristics
 + functional features
 + property interaction

C2

2

(c) Object property(b) Class instance(a) Class

Fig. 2. OCCPN structures for basic ontology elements.

3.3 Example

This section shows an excerpt of a camera ontology which describes a little issue
in the field of photography. The complete specification is in reference [14].

31

A Petri Net-based Approach to OWL Ontology Representation

Research in Computing Science 100 (2015)

Fig. 3 demonstrates, on the left side, the OWL statements to describe two
classes, namely: Lens and ValueRange, and some properties, both datatype and
object. Its corresponding OCCPN structure is on the right side.

Classes, defined in lines 1–2 and 8–9, correspond to primitive places labeled
as ValueRange, and Lens, respectively. Lines 3–7, which connect the datatype
property named minValue to ValueRange class, match to attribute definition in
the color of ValueRange place. A similar situation emerges around lines 10–14
which characterize a datatype property for Lens class.

Object property, declared in lines 15–18, ties, through aperture relation,
individuals from Lens class to those coming from ValueRange category. In OC-
CPN, this behavior is achieved by using a rule typed transition having as input
places those representing Lens and ValueRange classes. Its output place acts as
a warehouse of those pairs that overcome condition evaluation.

Finally, lines 19–20 creates an individual of Lens class, which, in turn, is
reflected in OCCPN by the marking in the Lens place. This token comprises the
name and type for the focalLength attribute.

1. <owl:Class rdf:about="&myCamera;ValueRange">
2. </owl:Class>
3. <owl:DatatypeProperty rdf:about="&myCamera;minValue">
4. <rdfs:domain rdf:resource="&myCamera;ValueRange"/>
5. <rdfs:range rdf:resource="&xsd;float"/>
6. </owl:DatatypeProperty>
7. <rdfs:Datatype rdf:about="&xsd;float"/>
8. <owl:Class rdf:about="&myCamera;Lens">
9. </owl:Class>
10. <owl:DatatypeProperty rdf:about="&myCamera;focalLength">
11. <rdfs:domain rdf:resource="&myCamera;Lens"/>
12. <rdfs:range rdf:resource="&xsd;string"/>
13. </owl:DatatypeProperty>
14. <rdfs:Datatype rdf:about="&xsd;string"/>
15. <owl:ObjectProperty rdf:about="&myCamera;aperture">
16. <rdfs:domain rdf:resource="&myCamera;Lens"/>
17. <rdfs:range rdf:resource="&myCamera;ValueRange"/>
18. </owl:ObjectProperty>
19. <myCamera:Lens rdf:ID = "lens_instance">
20. </myCamera:Lens>

Lens ValueRange

aperture

Place color:
 + name: aperture
 + domain: Lens
 + range: ValueRange

Lens color:
 + name: Lens
 + attribute: focalLength: <string>
 + operation: aperture

ValueRange color:
 + name: ValueRange
 + attribute: minValue: <float>
 + operation: aperture

lens_instance
+ name: lens_instance
 + type: myCamera:Lens

Fig. 3. An ontology part described by OCCPN.

4 Class Descriptions in OCCPN

OCCPN provides modeling primitives for the OWL statements to describe classes
in detail, namely: predefined classes, class constructors, and class interrelation.

Fig. 4 shows the OCCPN structures for the OWL predefined classes: owl:Thing
and owl:Nothing. A source place is a multicolor one since it represents the set

32

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

Source place Sink transition

(a) (b)owl:Thing owl:Nothing

Fig. 4. OCCPN structures for predefined classes.

of all individuals. It is very similar to a CCPN virtual place in the sense that
both act like token depot regardless of token’s type; however, a source locality is
unique and can have instances. A sink transition exemplifies owl:Nothing class
extension: the empty set, since it consumes tokens, but does not produce any.
In light of owl:Nothing is a subclass of every class, and, to be consistent with
the notation follows next, in OCCPN, a sink transition ends with a half-round.
A virtual place (see Fig. 1) only aids to consummate a class extension; hence, it
either has no name nor instances. For this reason, it portrays anonymous classes.

4.1 Constructors

The easiest way to create a class in OCCPN is assigning a class name to a
primitive place. However, OCCPN also provides arrangements to build more
elaborated (anonymous) classes.

Enumeration. In OCCPN, a class defined by enumeration corresponds to
a constant virtual place, i.e., that containing particular elements, only those
specified in its color. Elements outside the color specification are not allowed.

Set operators. Fig. 5 shows the composition for owl:intersectionOf, owl:u-
nionOf, and owl:complementOf. The performance of each structure is analogous
to its corresponding logical operator. Place Cn+1 in Fig. 5(a) stores those indi-
viduals that are members of each input place of composite typed transition T0.
T0 is responsible to verify class membership. Place Cn+1 in Fig. 5(b) allocates
elements which are in C1, C2, . . ., Cn or in all of them. Finally, Fig. 5(c) uses
an inhibitor arc to check complement of a place C1, i.e., those individuals not in
C1.

Property restriction. Fig. 6 describes the general form of a restriction on an
object property. Both cardinality and value constraints are verified by adjusting
the condition of transition T1, which represents the property limitation.

If any cardinality constraint proceeds, the arc (C1, T1) modifies its weight
with a new value, either w or the interval (w1, w2). Then, the transition T1

verifies that the number of tokens in its input places is enough to fire it according
to this new restriction.

Depending on the type of value constraints, the condition in transition T1

verifies either existential quantification, universal quantification, or a precise
value.

33

A Petri Net-based Approach to OWL Ontology Representation

Research in Computing Science 100 (2015)

C0 Cn
. . .

Cn+1

C0 Cn
. . .

Cn+1

Cn

Cn

(a) owl:intersectionOf (b) owl:unionOf (c) owl:complementOf

Fig. 5. OCCPN structures for set operators.

Restrictions on a datatype property add new constraints on the attribute that
represents it, which, in turn, is in the place color. Value constraints delimits
attribute’s domain. On the other hand, cardinality restrictions limit the number
of values that an attribute can take. Therefore, an attribute can be not null,
if owl:minCardinality has a number, different from zero, as its argument;
mono-valuated, when its cardinality is exactly one; or multi-valuated.

.

.

. C1

C2

T1

(1)

(1)

Fig. 6. General form of a restriction on an object property: (1) for owl:cardinality

constrains, and (2a), (2b), (2c) for owl:someValuesFrom, owl:allValuesFrom, and
owl:hasValue constraints, respectively.

4.2 Relation to other Classes

Subclass. In OCCPN, subclasses are pictured as the structure showed in Fig.
7(a). The color of a subclass place comprises its own description and, by exten-
sion, the specification of its superclass. Fig. 7(b) presents the case of disjoint
subclasses, and, Fig. 7(c), the situation of overlapping ones. Notice that rule
typed transitions can replace the copy ones to represent subclassed defined by a
predicate.

Disjoint. The OCCPN structure for the disjoint statement is in Fig. 8. The
composition encircled in dashed lines acts like a permanently disabled switch, so

34

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

Subclass
transition

Subclass
place

C0

SC1

C0

SC1 SC2 SC1 SC2

C0

(a) Subclass (b) Disjoint subclasses (c) Overlapping subclasses

Fig. 7. OCCPN structures for subclasses.

that, place C1 is never reachable from place C0 and vice versa, which guarantees
that they do not have individuals in common.

C0 Cn

C1

T1

T0

T2

E0 E1

. . .

Fig. 8. OCCPN structure for the owl:disjointWith clause.

Equivalent. OCCPN does not have any special structure to represent the
owl:equivalentClass sentence because it is useless to include two different
places to describe the same class extension. The section “class axioms”, in the
place color, describes the equality among classes.

5 Property Definition in OCCPN

In the OCCPN model, most of the property features described in Section 2.1
are either declared as implicit conditions on the attributes in the place color
or considered as additional constraints in the rule typed transition. In this last
case, property characteristics are also declared in the sections “logical charac-
teristics”, “functional properties”, or “property interaction” of the place color,
as appropriate.

35

A Petri Net-based Approach to OWL Ontology Representation

Research in Computing Science 100 (2015)

5.1 Logical Characteristics

In OCCPN, logical characteristics of an object property describe new subclass
structures, see, for example, Fig. 9(a) that shows the owl:TransitiveProperty

statement. However, for the sake of the model, the rule typed transition that
represents the object property also verifies the condition that describes each one
the logical relations, such as Fig. 9(b) shows. By so doing, place C3 stores all the
individuals satisfying the original condition and all the individuals that overcome
the second restriction. The color of the place C3 also indicates the type of the
relation.

C0 C1

T0

C2

SC1

(a) Complete structure

C0 C1

T0
+ logical characteristics: transitivity

C2
+ logical characteristics: transitivity

(a) Simplified structure

Fig. 9. OCCPN structure for owl:TransitiveProperty

5.2 Functional Features

In OCCPN, owl:InverseFunctionalProperty and owl:FunctionalProperty

features on object properties are similar to logical characteristics, i.e., there is a
nested condition attached to the rule typed transition.

When the owl:InverseFunctionalProperty applies on datatype properties,
it defines a not null, mono-valuated, and key attribute. There is a not null and
mono-valuated attribute if the owl:FunctionalProperty is declared.

5.3 Relation to other Properties

Inverse. The clause owl:inverseOf does not have any special construction
in OCCPN. The color of the output place of the rule typed transitions that
symbolize the object property captures this information.

Subproperty. The OCCPN structure for the rdfs:subPropertyOf clause is
similar to that showed in Fig. 9(a), but T1 evaluates the condition of the sub-
property instead of the logical/functional restriction. As it can be observed,
individuals in place C4 fulfill the conditions of both property and sub-property.

36

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

6 Running Example

Fig. 10 presents the complete OCCPN model for the camera ontology described
in reference [14]. Section 3 covers the basic transformation from ontology to
OCCPN, therefore, we only focus on the ExpensiveDSLR complex class creation.
As OWL statements in Fig. 10 shows, this class (place E0) is the conjunction
(transition T0) of two subclasses (places E1 and E2): one of them comes from
DSLR class (place E3), and, the other one, is the result of a property restriction
(place E4) which establishes that, at least, one camera owner must be a profes-
sional (transition T1). This corroborates that OCCPN is able to represent the
OWL expressiveness.

Lens
 + focalLength:
 <string>

ValueRange
 + minValue: <float>
 + maxValue:
 <float>

Body Camera
 + model: <string, not null>
 + manufactured_by: <funtional>

lens aperture shutterSpeed body

lens
 + Domain: Camera
 + Range: Lens

aperture
 + Domain: Lens
 + Range: ValueRange

shutterSpeed
 + Domain: Body
 + Range: ValueRange

body
 + Domain: Camera
 + Range: Body

Film

PointAnd-
Shoot

DSLR

owned_byown

Photographer
 + reviewedID:<string,
 functional,
 invFunc.>

Person

Professional

owned_by
 + Domain: DSLR
 + Range: Photographer
 + isInverseOf: own

Digital
 + effectivePixel: <not null,
 MegaPixel (decimal)>

ExpensiveDSLR
 + Color: DSLR + Professional

Non-professional

Amateur
 + Color: Person

1. <owl:Class rdf:about=
2. "&myCamera;ExpensiveDSLR">
3. <rdfs:subClassOf rdf:resource=
4. "&myCamera;DSLR"/>
5. <rdfs:subClassOf>
6. <owl:Restriction>
7. <owl:onProperty rdf:resource=
8. "&myCamera;owned_by"/>
9. <owl:someValuesFrom rdf:resource=
10. "&myCamera;Professional"/>
11. </owl:Restriction>
12. </rdfs:subClassOf>
13. </owl:Class>

E0

T0

E1 E2

E3

E4

T1

Fig. 10. The camera ontology [14] described by OCCPN.

7 Conclusions

This paper introduces OCCPN, a model to represent OWL ontologies. Previous
approaches focus on the creation of classes through assigning them an identifier,

37

A Petri Net-based Approach to OWL Ontology Representation

Research in Computing Science 100 (2015)

and relations of specialization, exclusion, and instantiation. By contrast, OCCPN
provides modeling primitives for the whole set of OWL language constructs, and
in so doing accounts for a comprehensive approach. Future work includes the
development of the formal reasoning process on OCCPN. Additionally, we plan
to address the usefulness of OCCPN to detect not only structural errors, such as
redundancy, circularity, and contradiction, but also those involving semantics.

References

1. W3C Semantic Web Activity. Available in: http://www.w3.org/2001/sw/
2. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,

Patel-Schneider, P.F., Stein, L.A.: W3C Recommendation, chap. OWL Web On-
tology Language Reference (2004)

3. Chavarŕıa-Báez, L., Li., X., Palma-Orozco, R.: Estimating the number of test cases
for active rule validation. In: Proc. of the 12th Mexican International Conference
on Artificial Intelligence (MICAI 2013). pp. 120–131 (2013)

4. Dubois, C., Famelis, M., Gogolla, M., Nobrega, L., Ober, I., Seidl, M., Völter, M.:
Research Questions for Validation and Verification in the Context of Model–Based
Engineering. In: MoDeVVa@MoDELS. pp. 67–76 (2013)

5. Grüninger, M.: Verification of the OWL–Time Ontology. In: Proc. of the Tenth
Intl. Semantic Web Conference. pp. 225–240 (2011)

6. Grüninger, M., Ong, D.: Verification of Time Ontologies with Points and Intervals.
In: Proc. of the Eighteenth Intl. Symposium on Temporal Representation and
Reasoning. pp. 31–38 (2011)

7. Li, X., Medina-Maŕın, J., Chapa-Vergara, S.: Applying Petri Nets in Active
Database Systems. IEEE Transactions on Systems, Man, and Cybernetics–Part
C: Applications and Reviews 37(4), 482–493 (2007)

8. Liu, J., Wang, K., He, Y.L., Wang, X.Z.: Formal Representation and Verification of
Ontology Using State Controlled Coloured Petri Nets. In: Dai, H., Liu, J., Smirnov,
E. (eds.) Reliable Knowledge Discovery. pp. 269–290. Springer–Verlag (2012)

9. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

10. Paton, N.W., Dı́az, O.: Active Database Systems. ACM Comput. Surv. 31(1),
63–103 (1999)

11. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.: OOPS! (OntOlogy
Pitfall Scanner!): An On–line Tool for Ontology Evaluation. Intl. Journal on
Semantic Web and Information Systems 10(2), 7–34 (2014)

12. Staab, S., Studer, R.: Handbook on Ontologies. Springer Publishing Company,
Incorporated (2009)

13. Wang, K., Liu, J., Ma, W.: Towards the Detection of Potential Contradictions
in Fuzzy Ontology Using a High Level Net Approach Integrated with Uncertainty
Inference. In: Proc. of the IEEE Intl. Conf. on Data Mining Workshops. pp. 884–890
(2010)

14. Yu, L.: OWL: Web Ontology Language. In: Yu, L. (ed.) A Developer’s Guide to
the Semantic Web. pp. 155–238. Springer, Heidelberg (2011)

38

Lorena Chavarría-Báez and Oscar Díaz

Research in Computing Science 100 (2015)

